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1 A Motivating Example for Studying Stochastic PDEs

1.1 Fluids: an example of what a stochastic PDE looks like

Here is an analogy. When you see a line of ants, you may think that the line is relatively
straight, so you write down an equation that describes the motion. If you increase the
precision of your model, you may see that the ants actually move with some random
fluctuations, so you add some randomness to your model. The more precision you require,
the more you realize that the ants are not moving in a straight line at all and are instead
constantly bumping into each other, exchanging information. This is how stochastic PDEs
are.

Imagine that we have a fluid for which the velocity of fluid particles are known, say
u(x, t). As a simple model for the fluid particle, we write

dx

dt
= u(x, t).

This is an ODE which, as a first approximation, gives us a good idea of a model for what
is happening. To take into account the thermal fluctuation of the fluid, we may write

dx

dt
= u(x, t)︸ ︷︷ ︸

vector field

+σ(x, t)︸ ︷︷ ︸
matrix

η(t), (1)

with η representing “white noise” (to be formally defined later) and σ(x, t) measuring the
strength of the fluctuation at (x, t). Here, η is a Gaussian process with E[η(t)] = 0 and
E[η(t)η(s)] = δ0(t− s), where δ0 is the Dirac delta “function” at 0.

In reality, u itself solves some PDE, and in the case of a (viscous) incompressible fluid,
we have

ut + (u · ∇)u+ ∇P︸︷︷︸
pressure

= ν∆u+ f︸︷︷︸
force

∇ · u = 0,
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where for simplicity we assume σ =
√

2νI. We have a system of 4 equations with 3
unknowns (the function u), so we need to solve this equation for the pair (u, P ). A natural
model example for f is that f = f(x, t) is “white noise” in (x, t) (sometimes, we assume f
is white in t and “colored” in x).

1.2 Regularity issues with white noise

Going back to the previous equation (1), how can we make sense of this equation? The
problem is that “white noise” cannot be realized as a function. A solution to (1) is an
example of a diffusion.1 Observe that if u = 0 and σ = 1, then dx

dt = η. As it turns
out, x(t) = x(0) + B(t), where B is a standard Brownian motion.2 It is well-known that
Brownian motion can be realized as a continuous function, in fact B ∈ C1/2−. Here, we
write Cα as the space of Hölder continuous functions of exponent α and Cα− =

⋂
β<α Cβ.

In fact, η = Ḃ ∈ C−1/2−. By f ∈ Cβ for β < 0, we mean f = ġ with g ∈ Cβ+1 (we will give
a more robust definition of this later).

Going back to ẋ = u(x, t) + σ(x, t)η(t), we expect this to have a solution x(·) ∈ C1/2−.
To make sense of this, we write

x(t) = x(0) +

∫ t

0
u(x(s), s) ds+

∫ t

0
σ(x(s), s) η(s) ds︸ ︷︷ ︸

dB(s)

.

We face the following difficulty:

η(ϕ) =

∫
η(s)ϕ(s) ds =

∫
Ḃ(s)ϕ(s) ds

IBP
= −

∫
B(s)ϕ̇(s) ds,

where ϕ is smooth with compact support. The problem is that f is not C1, only C1/2−.
This calls for studying

∫ t
0 g df with f, g continuous functions. This problem has a rich

history that we now review:

1. In fact, Riemann and Steiltjes defined the integral
∫ t

0 g df as∫ t

0
g df = lim

n→∞

2n∑
i=0

g(si)(f(ti+1)− f(ti)) (2)

with si ∈ [ti, ti+1], where the ti form a mesh with 2n points. It turns out that this
equation converges (no matter what we choose for si) if g is continuous (g ∈ C0) and
f ∈ BV is of bounded variation. Recall that f ∈ BV means ‖f‖BV < ∞, where
‖f‖BV = sup0<t1<···<tk<t

∑k−1
i=1 |f(ti+1) − f(ti)|. In particular, if g ∈ C0 and f ∈ C1,

then
∫ t

0 f dg can be defined.

1Diffusions were first described by Kolmogorov in the early 30s and later described by Paul Lévy and
Itô.

2The moral here is to still differentiate things that are not differentiable. Don’t let that stop you.
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2. Lebesgue theory allows us to interpret
∫ t

0 f dg as
∫ t

0 f dµ, where µ = g′ in a weak
sense: ∫

ϕdµ = g′(ϕ) = −
∫
ϕ′g dt

for all smooth ϕ. In this picture, f ∈ BV ⇐⇒ f ′ can be realized as a measure.

3. So far, we know how to define
∫
g df with g ∈ C0, f ∈ BV. But we can also make

sense of it if g ∈ BV, f ∈ C0 by declaring
∫ t

0 g df = g(t)f(t)− g(0)f(0)−
∫ t

0 f dg.

4. Young observed that equation (2) still works if f ∈ Cα, g ∈ Cβ with α + β > 1. In
fact, (2) works even when f ∈ BV1/α, g ∈ BV1/β, where

‖f‖BVp = sup
0≤t1<···<th≤t

∑
i

|f(ti+1)− f(ti)|p

for p ≥ 1. Observe that BV1/α ) Cα. Moreover, Young proved that h(t) =
∫ t

0 g df
satisfies the following bound:

|h(t)− h(s)− g(s)(f(t)− f(s))| ≤ c|t− s|α+β (3)

where c is a constant depending on ‖f‖Cα and ‖g‖Cα . In fact, h can be uniquely
specified as the only function for which h(0) = 0, and h satisfies (for some constant
c) (3). If h, h̃ are two solutions, then k = h− h̃ satisfies |k(t)− k(s)| ≤ c|t− s|α+β.

1.3 Ways of defining the stochastic integral with irregular functions

Going back to our integral
∫ t

0 σ(x(s), s) dB(s), Young’s theory does not apply because

both σ(x(s), s) and B(s) are both in C1/2−. As an example, consider
∫ t

0 F (B(s)) dB(s) for
F ∈ C1. In fact, the approximation in (2) may fail in two ways. Either the limit does not
exist or the limit exists but depends on the choice of si! Some popular choices of limits in
probability theory are:

Example 1.1. Itô defined the integral

M(t) =

∫ t

0
F (B(s)) dB(s) = lim

n→∞

2n−1∑
i=0

F (B(ti))(B(ti+1)−B(ti)).

The advantage is that the outcome M(t) is a martingale.

Here is another choice:

Example 1.2. Statonovich defined the approximation by replacing F (B(ti)) with

F (B(ti)) + F (B(ti+1))

2
.

There is also a “backward” way, where we choose F (B(ti+1)) instead. Next time, we
will discuss the drawbacks of Itô calculus and introduce rough path theory.
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